

Ana Christina Souza Wimmer

Aplicação do processo eletrolítico no tratamento de efluentes de uma indústria petroquímica

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Engenharia Metalúrgica e de Materiais pelo Programa de Pós-Graduação em Engenharia Metalúrgica do Departamento de Ciência dos Materiais e Metalurgia da PUC-Rio.

> Orientador: Olavo Barbosa Filho Co-orientador: Eduardo de Albuquerque Brocchi

> > Rio de Janeiro Setembro de 2007

ANA CHRISTINA SOUZA WIMMER

Aplicação do Processo Eletrolítico no Tratamento de Efluentes de uma Indústria Petroquímica

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Engenharia Metalúrgica e de Materiais pelo Programa de Pós-Graduação em Engenharia Metalúrgica do Departamento de Ciência dos Materiais e Metalurgia da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Olavo Barbosa Filho

Orientador Universidade do Estado do Rio de Janeiro - UERJ

Prof. Eduardo de Albuquerque Brocchi

Co-orientador Departamento de Ciência dos Materiais e Metalurgia – PUC-Rio

Profa. Lídia Yokoyama

Universidade Federal do Rio de Janeiro - UFRJ

Dr. Marcos Henrique de Pinho Maurício

Departamento de Ciência dos Materiais e Metalurgia - PUC-Rio

Prof. José Eugenio Leal

Coordenador Setorial de Pós-Graduação do Centro Técnico Científico da PUC-Rio

Rio de Janeiro, 13 de setembro de 2007.

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, da autora e do orientador.

Ana Christina Souza Wimmer

Graduou-se em Engenharia Civil, ênfase em Engenharia Sanitária, pela Universidade do Estado do Rio de Janeiro – UERJ.

Ficha Catalográfica

Wimmer, Ana Christina Souza

Aplicação do processo eletrolítico no tratamento de efluentes de uma indústria petroquímica / Ana Christina Souza Wimmer ; orientadores: Olavo Barbosa Filho, Eduardo A. Brocchi. – 2007.

195 f. : il. ; 30 cm

Dissertação (Mestrado em Ciência dos Materiais e Metalurgia)–Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2007.

Inclui bibliografia

1. Ciência dos Materiais e Metalurgia – Teses. 2. Tratamento de efluentes. 3. Tratamento de águas residuárias. 4. Indústria petroquímica. 5. Eletrocoagulação. 6. Processo eletrolítico. 7. Coagulação química. I. Barbosa Filho, Olavo. II. Brocchi, Eduardo A. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Ciência dos Materiais e Metalurgia. IV Título.

CDD: 669

Dedico à minha família, especialmente aos meus pais Eliana e Johann, minha irmã Márcia, minha tia Eleonora e minhas avós Isabel e Leopoldine (*in memorian*) e, é claro, a Javier.

Agradecimentos

A meu orientador, professor Olavo Barbosa Filho, pela amizade, orientação e estímulo para a realização deste trabalho.

Ao professor Eduardo de Albuquerque Brocchi pelo apoio neste trabalho.

À minha família pela educação, carinho e apoio e por serem os principais gestores da minha formação profissional.

À Javier Paúl Montalvo Andia pelo apoio nos bons e maus momentos.

Aos professores, funcionários e colegas do Departamento de Ciência dos Materiais e Metalurgia.

Aos membros da Comissão examinadora.

À todas as pessoas que de uma forma ou de outra ajudaram na realização deste trabalho.

Ao CNPq e à PUC-Rio, pelo apoio concedido para a realização deste trabalho.

Resumo

Wimmer, Ana Christina Souza. **Aplicação do processo eletrolítico no tratamento de efluentes de uma indústria petroquímica**. Rio de Janeiro, 2007. 195p. Dissertação de Mestrado – Departamento de Ciência dos Materiais e Metalurgia, Pontifícia Universidade Católica do Rio de Janeiro.

A indústria petroquímica constitui um dos mais importantes setores industriais no Brasil. A grande diversidade dos processos de fabricação praticados faz aumentar a necessidade de caracterização dos efluentes gerados em cada planta industrial. Em geral, os efluentes apresentam elevado teor de matéria orgânica, cuja remoção é necessária para atender às normas técnicas de descarte de efluentes industriais. Um dos processos de tratamento utilizados é a coagulação química seguida de tratamento biológico. Na coagulação química, sais de alumínio ou ferro são usados como coagulantes. Devido às grandes flutuações de carga orgânica, as quais dificultam a dosagem do coagulante, buscam-se alternativas para aprimorar o tratamento. Neste contexto, a eletrocoagulação pode servir como alternativa à coagulação química ou como pré-tratamento. O presente trabalho consistiu de ensaios de coagulação química (Jar Test) e de eletrocoagulação em escala de laboratório, utilizando efluentes gerados em uma indústria petroquímica fabricante de borracha sintética. Os ensaios permitiram comparar as eficiências de remocão de matéria orgânica por eletrocoagulação e por coagulação química, bem como comparar as eficiências desses tratamentos em escala de laboratório com aquelas obtidas na etapa de tratamento físico-químico (coagulação química e floculação) da ETEI - Estação de Tratamento de Efluentes Industriais da indústria citada. Em todos os casos, as eficiências de remoção de carga orgânica foram avaliadas pela DQO (Demanda Química de Oxigênio). Nos ensaios de coagulação química em laboratório, utilizou-se como coagulante o sulfato de alumínio. Os parâmetros investigados foram o pH ótimo de coagulação e a dosagem ótima de coagulante. Os ensaios do processo eletrolítico foram realizados em batelada com eletrodos de alumínio. Os parâmetros investigados foram a temperatura, o potencial aplicado, o pH inicial, a distância entre eletrodos, o número de eletrodos e o desgaste dos mesmos. As eficiências de remoção de DQO pelo processo de eletrocoagulação apresentaram valores até três vezes maiores que a média mensal obtida na ETEI da indústria em questão, pelo processo de coagulação química e floculação, no período da coleta das amostras, indicando a possibilidade de aplicação do tratamento eletrolítico ao efluente estudado.

Palavras-chave

Tratamento de efluentes; tratamento de águas residuárias; indústria petroquímica; eletrocoagulação; processo eletrolítico; coagulação química.

Abstract

Wimmer, Ana Christina Souza. **Application of the electrolytic process in the treatment of wastewater from a petrochemical industry**. Rio de Janeiro, 2007. 195p. MSc. Dissertation – Departamento de Ciência dos Materiais e Metalurgia, Pontifícia Universidade Católica do Rio de Janeiro.

The petrochemical industry constitutes one of the most important industrial sectors in Brazil. The great diversity of processes of manufacture makes to increase the necessity of characterization of the effluents generated in each industrial plant. In general, the effluents presents high grade of organic matter, whose removal is necessary to expect to the technical standards of discarding of industrials wastewaters. One of the used processes of treatment is the chemical coagulation followed by biological treatment. In chemical coagulation, aluminum or iron salts are used as coagulants. Because of the large fluctuations of organic load, which makes difficult the dosage of the coagulant, alternatives are being looked for the improvement of the treatment. In this context, the electrocoagulation may be an alternative to the chemical coagulation or can serve as a preliminar treatment. The present work consisted of assays of chemical coagulation (Jar Test) and of electrocoagulation in scale of laboratory, using effluent generated in a petrochemical industry manufacturer of synthetic rubber. The assays had allowed to compare the efficiencies of removal of organic matter by electrocoagulation and chemical coagulation, as well as comparing the efficiencies of these treatments in scale of laboratory with those gotten in the stage of treatment physical-chemical (chemical coagulation and flocculation) of Industrial Effluent Treatment Station of the cited industry. In all the cases, the efficiencies of organic load removal had been evaluated by the COD (Chemical Oxygen Demand). In the chemical coagulation experiments in laboratory, the aluminum sulphate was used as coagulant. The investigated parameters have been pH excellent of coagulation and the excellent dosage of coagulant. The assays of the electrolytic process had been carried through in batch with aluminum electrodes. The investigated parameters have been the temperature, the applied potential, pH initial, the distance between electrodes, the number of electrodes and the consuming of them. The efficiencies of COD removal for the

electrocoagulation process reached values up to three times higher that the monthly average observed in the treatment station of the studied industry in the chemical coagulation and flocculation stage. The results indicate the possibility of application of the process in the treatment of the studied effluent.

Keywords

Wastewater treatment; petrochemical industry; electrolytic process; electrocoagulation; chemical coagulation.

Sumário

1 Introdução	23
2 Objetivos	26
3 Geração de efluentes da indústria petroquímica e processos	5
convencionais de tratamento	27
3.1 Natureza dos processos petroquímicos	27
3.2 Efluentes típicos da indústria petroquímica	30
3.2.1 Emissões gasosas	31
3.2.2 Resíduos sólidos	32
3.2.3 Efluentes líquidos	33
3.3 Processos gerais de tratamento	34
3.4 Empresa estudada	35
3.5 Desenvolvimentos recentes de tratamento de efluentes da	indústria
petroquímica	39
4 Coagulação química	40
4.1 Propriedades das partículas coloidais	42
4.1.1 Estabilização eletrostática	43
4.1.2 Estabilização estérica	48
4.2 Mecanismos	50
4.2.1 Compressão da dupla camada elétrica	50
4.2.2 Adsorção e neutralização	51
4.2.3 Varredura	51
4.2.4 Adsorção e formação de pontes	52
4.3 Tipos de coagulantes e suas propriedades	52
4.4 Coagulação de efluentes industriais	56
5 Processos eletrolíticos aplicados ao tratamento de águas res	siduárias 58
5.1 Histórico	58
5.2 Conceitos básicos	59
5.3 Teoria da eletrólise e leis de Faraday	62

5.4 Tipos de reatores e eletrodos	65
5.5 Fenômenos envolvidos no tratamento eletrolítico	68
5.5.1 Eletrólise da água	68
5.5.2 Eletrocoagulação	69
5.5.3 Eletroflotação	70
5.5.4 Eletrooxidação	70
5.6 Mecanismos dos processos eletrolíticos	71
5.7 Principais reações químicas	73
5.8 Termodinâmica e cinética eletroquímica	79
5.8.1 Conceitos	79
5.8.2 Cinética dos processos eletródicos	82
5.9 Parâmetros de controle dos processos eletrolíticos	86
5.9.1 Temperatura	86
5.9.2 рН	89
5.9.3 Potencial	91
5.9.4 Tempo de eletrólise	92
5.9.5 Distância ente as placas (eletrodos)	93
5.9.6 Corrente elétrica	94
5.9.7 Material dos eletrodos	94
5.9.8 Densidade de corrente	95
5.9.9 Espuma	97
5.10 Fatores que afetam a EC	98
5.11 Aplicações ao tratamento de efluentes industriais	98
5.12 Vantagens e limitações	99
6 Metodologia experimental	102
6.1 Geração de efluentes e plano de amostragem	102
6.2 Métodos de análise e caracterização dos efluentes	102
6.3 Ensaios de coagulação química (<i>Jar Test</i>)	103
6.3.1 Dosagem mínima aproximada de coagulante – $AI_2(SO_4)_3$	103
6.3.2 pH ótimo de coagulação	104
6.3.3 Dosagem ótima de coagulante – $AI_2(SO_4)_3$	105
6.4 Ensaios de tratamento eletrolítico	106
6.4.1 Descrição do equipamento	106
6.4.2 Parâmetros investigados	107
6.4.3 Procedimento experimental	107

6.4.3.1 Temperatura	108
6.4.3.2 pH inicial	108
6.4.3.3 Potencial aplicado	108
6.4.3.4 Tempo de eletrólise	108
6.4.3.5 Distância entre eletrodos	109
6.4.3.6 Eletrodos novos e usados	109
7 Resultados e discussão	110
7.1 Coagulação química	110
7.1.1 Resultados preliminares	110
7.1.1.1 Determinação do pH ótimo	110
7.1.1.2 Determinação da dosagem ótima de coagulante	112
7.1.2 Resultados finais	114
7.1.2.1 Determinação do pH ótimo	114
7.1.2.2 Determinação da dosagem ótima de coagulante	116
7.2 Processo eletrolítico	117
7.2.1 Resultados preliminares	117
7.2.2 Resultados do programa experimental principal	120
7.2.2.1 Efeito da temperatura	120
7.2.2.2 Efeito do pH inicial	123
7.2.2.3 Efeito do potencial aplicado	124
7.2.2.4 Efeito do tempo de eletrocoagulação	126
7.2.2.5 Efeito da distância entre eletrodos	127
7.2.2.6 Sólidos sedimentáveis	128
7.2.2.7 Corrosão e perda de massa dos eletrodos	131
7.2.2.8 Consumo de energia e custo de operação	133
7.2.2.9 Eletrodos novos e usados	135
7.2.3 Comparação entre coagulação química e eletrocoagulação	137
8 Conclusões e recomendações	140
8.1 Conclusões	140
8.2 Recomendações	141
Referências bibliográficas	143
APÊNDICE A – Reagentes e materiais utilizados	156

APÊNDICE B – Equipamentos utilizados	157
APÊNDICE C – Procedimento de Jar Test	158
APÊNDICE D – Descrição da análise de DQO (Método HACH)	160
APÊNDICE E – Resultado dos testes preliminares de coagulação química (Amostra 23.08.2006)	164
APÊNDICE F – Resultados dos testes finais de coagulação química	167
APÊNDICE G – Resultado dos testes preliminares do processo eletrolítico	170
APÊNDICE H – Resultado dos testes finais do processo eletrolítico	174
APÊNDICE I – Cálculo dos custos de operação	195

Lista de figuras

Figura 3.1 – Principais derivados do metano (Mondragón, 2001).	28
Figura 3.2 – Principais derivados do etileno (Mondragón, 2001).	29
Figura 3.3 – Fluxograma típico de processos petroquímicos (Petroflex).	30
Figura 3.4 – Fluxograma típico de um processo de tratamento de	
águasresiduárias da indústria petroquímica (Adaptado de Siemens, 2007).	35
Figura 3.5 – Diagrama simplificado do processo de tratamento de	
efluentes praticados na empresa estudada.	38
Figura 4.6 – Interação entre partícula coloidal e água de hidratação em	
sistemas aquosos (Di Bernardo, 2005).	43
Figura 4.7 – Representação esquemática da dupla camada elétrica	
nas vizinhanças de uma interface sólido-líquido (Di Bernardo, 2005).	46
Figura 4.8 – Configuração esquemática da dupla camada	
elétrica (Di Bernardo, 2005).	47
Figura 4.9 – Configuração esquemática de polímeros adsorvidos na	
superfície de partículas coloidais (Di Bernardo, 2005).	49
Figura 4.10 – Possibilidade de interações repulsivas decorrentes de	
polímeros adsorvidos na superfície de partículas coloidais	
(Di Bernardo, 2005).	50
Figura 4.11 – Caminhos para a coagulação por adsorção-neutralização de	
carga e por varredura utilizando sulfato de alumínio (Di Bernardo, 2005).	52
Figura 5.12 – Esquema da configuração mínima de um sistema	
eletroquímico (Ticianelli, 2005).	63
Figura 5.13 – Reator de EC em escala de bancada com eletrodos	
monopolares em: (a) paralelo e, (b) série (Mollah, 2001).	66
Figura 5.14 – Reator de EC em escala de bancada com eletrodos bipolares	
em paralelo (Mollah, 2001).	67
Figura 5.15 – Interações que ocorrem dentro de um reator de	
eletrocoagulação (Holt <i>et al.</i> , 2002).	72
Figura 5.16 – Hidrólise do AI em função do pH (Crespilho e Rezende, 2004).	74
Figura 5.17 – Diagrama de atividade do Fe(III), (a), e Fe(II), (b), de acordo	
com o pH (Irdemez <i>et al</i> ., 2006).	77
Figura 5.18 – Diagrama de equilíbrio Eh-pH para o sistema	
alumínio-água a 25ºC (Holt, 2002 <i>apud</i> Pourbaix, 1974).	80

Figura 5.19 – Etapas de um processo eletroquímico envolvendo uma	
reação catódica: (1) aproximação do reagente à superfície do eletrodo;	
(2) reação de transferência de elétron; (3) processo migratório	
para compensação da carga injetada na solução (Ticianelli, 2005).	83
Figura 5.20 – Resultados da eletrólise a várias temperaturas, com	
E = 8V, t = 40 min e [Na ₂ SO ₄] = 0,05 M (Shen <i>et al.</i> 2006).	88
Figura 5.21 – Corrente elétrica e condutividade em várias temperaturas,	
com E = 8V, t = 40 min e [Na ₂ SO ₄] = 0,05 M (Shen <i>et al.</i> 2006).	88
Figura 5.22 – Comparação de três tipos de fatores que	
influenciam a degradação, com tempo de 40 min (Shen <i>et al</i> . 2006).	89
Figura 5.23 – Influência do pH inicial na remoção de DQO e turbidez	
após 8 minutos de operação, com densidade de corrente constante	
de 28,5 mA/cm ² e condutividade inicial de 2,4 mS/cm (Essadki <i>et al.</i> , 2007).	91
Figura 5.24 – Corrente elétrica e condutividade em várias voltagens, a	
T = 25°C, t = 40 minutos e [Na ₂ SO ₄] = 0,05 M (Shen <i>et al.</i> , 2006).	92
Figura 5.25 – Efeito do tempo de eletrólise na eficiência de remoção	
de cor (Daneshvar <i>et al</i> ., 2007).	92
Figura 5.26 – Efeito do tempo de eletrólise na eficiência de remoção de	
DQO em função da densidade de corrente, com pH inicial de 8,3 e	
condutividade inicial de 2,4 mS/cm (Essadki <i>et al</i> ., 2007).	93
Figura 5.27 – Efeito da densidade de corrente na eficiência de remoção	
de cor (Daneshvar <i>et al</i> ., 2007).	95
Figura 5.28 – Efeito da densidade de corrente na remoção de poluentes,	
com pH inicial = 4,96 (Adhoum e Monser, 2004).	97
Figura 6.29 – Esquema do equipamento de <i>Jar Test</i> utilizado nos	
experimentos de coagulação química.	103
Figura 6.30 – Equipamento de <i>Jar Test</i> utilizado na determinação do pH	
ótimo de coagulação. Amostra de 10.07.2007.	104
Figura 6.31 – Equipamento de <i>Jar Test</i> utilizado na	
determinação da concentração ótima de coagulante. Amostra de	
10.07.2007.	105
Figura 6.32 – Esquema de montagem para o processo eletrolítico.	106
Figura 6.33 – Equipamento utilizado nos ensaios do tratamento eletrolítico.	107
Figura 7.34 – Determinação do pH ótimo de coagulação (Condições	
iniciais: Turbidez = 429,2 UNT; Cor = 149 uC; Concentração de	
alumínio = 0,121 g/L). Dados: Tabela E.1 e E.2, Apêndice E.	

Amostra de 23.08.2006.	111
Figura 7.35 – Remoção de DQO em função do pH	
(Condições iniciais: Turbidez = 429,2 UNT; Cor = 149 uC; Concentração de	
alumínio = 0,121 g/L). Dados: Tabela E.1 e E.2, Apêndice E.	
Amostra de 23.08.2006.	112
Figura 7.36 – Determinação da dosagem ótima de coagulante no pH	
ótimo de coagulação (Condições iniciais: pH = 7,0; Turbidez = 429,2 UNT;	
Cor = 149 uC; Concentração de alumínio = 0,121 g/L). Dados: Tabela E.1	
e E.4, Apêndice E. Amostra de 23.08.2006.	113
Figura 7.37 – Remoção de DQO em função da dosagem de coagulante	
no pH ótimo de coagulação (Condições iniciais: pH = 7,0;	
Turbidez = 429,2 UNT; Cor = 149 uC; Concentração de alumínio =	
0,121 g/L). Dados: Tabela E.1 e E.4, Apêndice E. Amostra de 23.08.2006.	114
Figura 7.38 – Determinação do pH ótimo de coagulação (Condições	
iniciais: Turbidez = 168 UNT; Concentração de AI = 0,081 g/L). Dados:	
Tabela F.1 e F.2, Apêndice F. Amostra de 10.07.2007.	115
Figura 7.39 – Remoção de turbidez em função do pH (Condições	
iniciais: Turbidez = 168 UNT; Concentração de AI = 0,081 g/L). Dados:	
Tabela F.1 e F.2, Apêndice F. Amostra de 10.07.2007.	115
Figura 7.40 – Determinação da dosagem ótima de coagulante	
(Condições iniciais: pH = 7,1; Turbidez = 168 UNT). Dados: Tabela F.3	
e F.4, Apêndice F. Amostra de 10.07.2007.	116
Figura 7.41 – Remoção de turbidez em função da concentração de	
alumínio no pH ótimo de coagulação (Condições iniciais: pH = 7,1;	
Turbidez = 168 UNT). Dados: Tabela F.3 e F.4, Apêndice F.	
Amostra de 10.07.2007.	117
Figura 7.42 – Efeito da diferença de potencial aplicada na remoção de	
matéria orgânica (Condições experimentais: pH inicial = 3,9; Tempo de	
eletrólise = 15 minutos; Distância entre eletrodos = 1,5 cm; 2 eletrodos).	
Dados: Item G.1, Apêndice G. Amostra de 23.08.2007.	118
Figura 7.43 – Efeito da diferença de potencial aplicado no pH final	
(Condições experimentais: pH inicial = 3,9; Tempo de eletrólise = 15 minutos	;
Distância entre eletrodos = 1,5 cm; 2 eletrodos). Dados: Item G.1,	
Apêndice G. Amostra de 23.08.2007.	118
Figura 7.44 – Variação da densidade de corrente em relação ao	
tempo de eletrólise para diferentes valores de ddp (Condições	

experimentais: pH inicial = 3,9; Tempo de eletrólise = 15 minutos;	
Distância entre eletrodos = 1,5 cm; 2 eletrodos). Dados: Item G.1,	
Apêndice G. Amostra de 23.08.2007.	119
Figura 7.45– Efeito da variação do pH inicial na remoção de carga	
orgânica (Condições experimentais: E = 5V; Tempo de eletrólise =	
15 minutos; Distância entre eletrodos = 1,0 cm; 2 eletrodos). Dados:	
Item G.2, Apêndice G. Amostra de 23.08.2007.	120
Figura 7.46 – Efeito da temperatura na remoção de carga orgânica	
(Condições experimentais: pH inicial = 7,1; E = 5V; Tempo de	
eletrólise = 15 minutos; Distância entre eletrodos = 1,0 cm; 2 eletrodos).	
Dados: Item H.1, Apêndice H. Amostra de 10.07.2007.	121
Figura 7.47 – Efeito da temperatura na corrente (Condições	
experimentais: pH inicial = 7,1; E = 5V; Tempo de eletrólise = 15 minutos;	
Distância entre eletrodos = 1,0 cm; 2 eletrodos). Dados: Item H.1,	
Apêndice H. Amostra de 10.07.2007.	122
Figura 7.48 – Variação da temperatura ao longo do tempo	
(Condições experimentais: pH inicial = 7,1; E = 5V; Tempo de eletrólise =	
15 minutos; Distância entre eletrodos = 1,0 cm; 2 eletrodos). Dados:	
Item H.1, Apêndice H. Amostra de 10.07.2007.	123
Figura 7.49 – Efeito do pH inicial na remoção de DQO e no pH final	
(Condições experimentais: Temperatura inicial = 42ºC; E = 5V;	
Tempo de eletrólise = 15 minutos; Distância entre eletrodos =	
1,0 cm; 2 eletrodos). Dados: Item H.2, Apêndice H. Amostra de 10.07.2007.	124
Figura 7.50 – Efeito do potencial aplicado na remoção de DQO	
(Condições experimentais: Temperatura inicial = 42ºC; pH inicial = 5,5;	
Tempo de eletrólise = 15 minutos; Distância entre eletrodos =	
1,0 cm; 2 eletrodos). Dados: Item H.3, Apêndice H. Amostra de 10.07.2007.	125
Figura 7.51 – Variação da temperatura ao longo do tempo para	
diferentes potenciais aplicados (Condições experimentais: Temperatura	
inicial = 42ºC; , pH inicial = 5,5; Tempo de eletrólise = 15 minutos;	
Distância entre eletrodos = 1,0 cm; 2 eletrodos). Dados: Item H.3,	
Apêndice H. Amostra de 10.07.2007.	126
Figura 7.52 – Efeito do tempo de operação na remoção de matéria	
orgânica e turbidez (Condições experimentais: Temperatura inicial =	
42ºC; pH inicial = 5,5; E = 3V; Distância entre eletrodos = 1,0 cm;	
2 eletrodos). Dados: Item H.4, Apêndice H. Amostra de 10.07.2007.	126

Figura 7.53 – Efeito da distância entre eletrodos na remoção de matéria orgânica (Condições experimentais: Temperatura inicial = 42°C; pH inicial = 5,5; E = 3V; Tempo de eletrólise = 15 min; 2 eletrodos). Dados: 127 Item H.5, Apêndice H. Amostra de 10.07.2007. Figura 7.54 – Efeito do pH inicial na remoção nos sólidos sedimentáveis e no pH final (Condições experimentais: Temperatura inicial = 42°C; E = 5V; Tempo de eletrólise = 15 minutos; Distância entre eletrodos = 1,0 cm; 2 eletrodos). Dados: Item H.2, Apêndice H. Amostra de 10.07.2007. 128 Figura 7.55 - Efeito do potencial aplicado nos sólidos sedimentáveis (Condições experimentais: Temperatura inicial = 42°C; pH inicial = 5,5; Tempo de eletrólise = 15 minutos; Distância entre eletrodos = 1,0 cm; 2 eletrodos). Dados: Item H.3, Apêndice H. Amostra de 10.07.2007. 129 Figura 7.56 – Sólidos sedimentáveis vistos no Cone de Imhoff após tempo de sedimentação de 1h, com diferentes potenciais aplicados (Amostra de 10.07.2007): (a) Efluente a ser tratado; (b) E = 2 V; (c) E = 4 V; (d) E = 5 V; (e) E = 6 V; (f) E = 7 V; (g) E = 8 V. 130 Figura 7.57 – Efeito da temperatura no consumo dos eletrodos (Condições experimentais: pH inicial = 7,1; E = 5V; Tempo de eletrólise = 15 minutos; Distância entre eletrodos = 1,0 cm; 2 eletrodos). Dados: Item H.1, Apêndice H. Amostra de 10.07.2007. 131 Figura 7.58 – Efeito do potencial aplicado no consumo dos eletrodos (Condições experimentais: Temperatura inicial = 42°C; pH inicial = 5,5; E = 3V; Distância entre eletrodos = 1,0 cm; 2 eletrodos). Dados: Item H.3, Apêndice H. Amostra de 10.07.2007. 132 Figura 7.59 – Efeito do tempo de eletrólise no consumo dos eletrodos (Condições experimentais: Temperatura inicial = 42°C; pH inicial = 5,5; E = 3V; Distância entre eletrodos = 1,0 cm; 2 eletrodos). Dados: Item H.4, Apêndice H. Amostra de 10.07.2007. 132 Figura 7.60 – Variação do consumo de energia em função do potencial aplicado e respectiva remoção de matéria orgânica (Condições experimentais: Temperatura inicial = 42°C; pH inicial = 5,5; Tempo de eletrólise = 15 minutos; Distância entre eletrodos = 1,0 cm; 2 eletrodos). Dados: Item H.3, Apêndice H. Amostra de 10.07.2007. 133 Figura 7.61 – Custo de operação em relação ao potencial aplicado (Condições experimentais: Temperatura inicial = 42°C; pH inicial = 5,5; tempo de eletrólise = 15 min; Distância entre eletrodos = 1,0 cm; 2 eletrodos).

Dados: Item H.3, Apêndice H. Amostra de 10.07.2007.	134
Figura 7.62 – Efeito do tempo de eletrólise no consumo de energia	
calculados pela lei de Faraday e respectiva remoção de carga	
orgânica (Condições experimentais: Temperatura inicial = 42ºC; pH	
inicial = 5,5; E = 3V; Distância entre eletrodos = 1,0 cm; 2 eletrodos).	
Dados: Item H.4, Apêndice H. Amostra de 10.07.2007.	135
Figura 7.63 – Custo de operação em relação ao tempo	
(Condições experimentais: Temperatura inicial = 42ºC; pH inicial = 5,5;	
E = 3V; Distância entre eletrodos = 1,0 cm; 2 eletrodos). Dados:	
Item H.4, Apêndice H. Amostra de 10.07.2007.	135
Figura 7.64 – Efeito do desgaste dos eletrodos (Condições	
experimentais: Temperatura inicial = 42ºC; pH inicial = 5,5; E = 3V;	
Tempo de eletrólise = 15 min; Distância entre eletrodos = 1,0 cm;	
2 eletrodos).Dados: Item H.7, Apêndice H. Amostra de 10.07.2007.	136
Figura 7.65 – Resposta da corrente para eletrodos novos e usados	
(Condições experimentais: Temperatura inicial = 42ºC; pH inicial = 5,5;	
E = 3V; Tempo de eletrólise = 15 min; Distância entre eletrodos =	
1,0 cm; 2 eletrodos). Dados: Item H.7, Apêndice H. Amostra de 10.07.2007.	137
Figura 7.66 – Comparação entre os experimentos de <i>Jar Test</i>	
(Condições iniciais: Turbidez = 168 UNT; Concentração de AI =	
0,081 g/L. Dados: Tabela F.1 e F.2, Apêndice F) e de	
eletrocoagulação (Condições experimentais: E = 5V; Tempo de	
eletrólise = 15 minutos; Distância entre eletrodos = 1,0 cm; 2 eletrodos.	
Dados: Item H.2, Apêndice H). Amostra de 10.07.2007.	138

Lista de tabelas

Tabela 3.1 – Emissões de COVs para diferentes processos petroquímicos	
(Fonte: World Bank Group, 1998).	32
Tabela 3.2 – Caracterização de um efluente industrial de um	
processo de produção de etileno (Fonte: World Bank Group, 1998).	34
Tabela 3.3 – Valores médios dos principais parâmetros afluentes da	
estação (Fonte: Reis, 1999).	36
Tabela 4.1 – Aplicações da coagulação química (Fonte: Eckenfelder, 1989).	55
Tabela 4.2 – Coagulação química de águas residuárias de diferentes	
indústrias (Fonte: Eckenfelder, 1989; Al-Malack et al., 1999;	
Song <i>et al.</i> , 2004).	57
Tabela 5.4 – Classificação dos compostos que contribuem para a	
DQO (Fonte: Moreno-Casillas et al., 2007).	99

Lista de siglas

- ANEEL Agência Nacional de Energia Elétrica
- AOP Asociación Española de Operadores de Productos Petrolíferos
- API American Petroleum Institute
- COVs Compostos Orgânicos Voláteis
- CONAMA Conselho Nacional do Meio Ambiente
- CPI Corrugated Plate Interceptor (Interceptor de Placa Ondulada)
- CQ Coagulação Química
- ddp diferença de potencial
- DQO Demanda Química de Oxigênio
- EC Eletrocoagulação
- ETEI Estação de Tratamento de Efluentes Industriais
- FEEMA Fundação Estadual de Engenharia do Meio Ambiente
- IISRP International Institute of Synthetic Rubber Producers
- PPI Parallel Plate Interceptor (Interceptor de Placa Paralela)
- RFF Resíduo Filtrável Fixo
- RFT Resíduo Filtrável Total
- RFV Resíduo Filtrável Volátil
- RNFF Resíduo Não Filtrável Fixo
- RNFT Resíduo Não Filtrável Total
- RNFV Resíduo Não Filtrável Volátil
- SDF Sólidos Dissolvidos Fixos
- SDT Sólidos Dissolvidos Totais
- SDV Sólidos Dissolvidos Voláteis
- SFT Sólidos Fixos Totais
- SISNAMA Sistema Nacional do Meio Ambiente
- SSF Sólidos em Suspensão Fixos
- SST Sólidos em Suspensão Totais
- SSV Sólidos em Suspensão Voláteis
- ST Sólidos Totais
- SVT Sólidos Voláteis Totais

"A mente que se abre a uma nova idéia jamais voltará ao seu tamanho original"

Albert Einstein